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1. Introduction

Perturbative QCD (pQCD) successfully predicts inclusive energy spectra of particles in

jets. To this end it was enough to make one step beyond the leading “Double Logarithmic

Approximation” (DLA) which is known to overestimate soft gluon multiplication, and to

describe parton cascades with account of first sub-leading single logarithmic (SL) effects.

Essential SL corrections to DLA arise from:

• the running coupling αs(k
2
⊥);

• decays of a parton into two with comparable energies, z ∼ 1 (the so called “hard

corrections”, taken care of by employing exact DGLAP [1] splitting functions);
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• kinematical regions of successive parton decay angles of the same order of magnitude,

Θi+1 ∼ Θi. The solution to the latter problem turned out to be extremely simple,

namely the replacement of the strong angular ordering (AO), Θi+1 ¿ Θi, imposed by

gluon coherence in DLA , by the exact AO condition Θi+1 ≤ Θi (see [2] and references

therein). The corresponding approximation is known as MLLA (Modified Leading

Logarithm Approximation) and embodies the next-to-leading correction, of order

γ2
0 , to the parton evolution “Hamiltonian”, γ0 ∝ √

αs being the DLA multiplicity

anomalous dimension [2].

So doing, single inclusive charged hadron spectra (dominated by pions) were found to

be mathematically similar to that of the MLLA parton spectrum, with an overall propor-

tionality coefficient Kch normalizing partonic distributions to the ones of charged hadrons;

Kch depends neither on the jet hardness nor on the particle energy. This finding was in-

terpreted as an experimental confirmation of the Local Parton-Hadron Duality hypothesis

(LPHD) (for a review see [3, 4] and references therein). However, in the ratio of two-particle

distribution and the product of two single particle distributions that determine the corre-

lation, this non-perturbative parameter cancels. Therefore, one expects this observable to

provide a more stringent test of parton dynamics. At the same time, it constitutes much

harder a problem for the naive perturbative QCD (pQCD) approach.

The correlation between two soft gluons was tackled in DLA in [5]. The first realistic

prediction with account of next-to-leading (SL) effects was derived by Fong and Webber

in 1990 [6]. They obtained the expression for the two-particle correlator in the kinemat-

ical region where both particles were close in energy to the maximum (“hump”) of the

single inclusive distribution. In [7] this pQCD result was compared with the OPAL e+e−

annihilation data at the Z0 peak: the analytical calculations were found to have largely

overestimated the measured correlations.

In this paper we use the formalism of jet generating functionals [8] to derive the

MLLA evolution equations for particle correlators (two particle inclusive distributions).

We then use the soft approximation for the energies of the two particles by neglecting

terms proportional to powers of x1, x2 ¿ 1 (x is the fraction of the jet energy carried away

by the corresponding particle). Thus simplified, the evolution equations can be solved

iteratively and their solutions are given explicitly in terms of logarithmic derivatives of

single particle distributions.

This allows us to achieve two goals. First, we generalize the Fong-Webber result by

extending its domain of application to the full kinematical range of soft particle energies.

Secondly, by doing this, we follow the same logic as was applied in describing inclusive

spectra, namely treating exactly approximate evolution equations. Strictly speaking, such

a solution, when formally expanded, inevitably bears sub-sub-leading terms that exceed

the accuracy with which the equations themselves were derived. This logic, however, was

proved successful in the case of single inclusive spectra [9], which demonstrated that MLLA

equations, though approximate, fully take into account essential physical ingredients of

parton cascading: energy conservation, coherence, running coupling constant. Applying

the same logic to double inclusive distributions should help to elucidate the problem of

particle correlations in QCD jets.
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The paper is organized as follows.

• in section 2 we recall the formalism of jet generating functionals and their evolution

equations; we specialize first to inclusive energy spectrum, and then to 2-particle

correlations;

• in section 3, we solve exactly the evolution equations in the low energy (small x)

limit; how various corrections are estimated and controlled is specially emphasized;

• section 4 is dedicated to correlations in a gluon jet; the equation to be solved itera-

tively is exhibited, and an estimate of the order of magnitudes of various contributions

is given;

• section 5 is dedicated to correlations in a quark jet, and follows the same lines as

section 4;

• in section 6 we give all numerical results, for LEP-I, Tevatron and LHC. They are

commented, compared with Fong-Webber for OPAL, but all detailed numerical in-

vestigations concerning the size of various corrections is postponed, for the sake of

clarity, to appendix E;

• a conclusion summarizes this work.

Six appendices provide all necessary theoretical demonstrations and numerical inves-

tigations.

• in appendix A and B we derive the exact solution of the evolution equations for the

gluon and quark jet correlators;

• appendix C is a technical complement to subsection 4.2;

• in appendix D we demonstrate the exact solution of the MLLA evolution equation

for the inclusive spectrum and give analytic expressions for its derivatives;

• appendix E is dedicated to a numerical analysis of all corrections that occur in the

iterative solutions of the evolution equations;

• in appendix F we perform a comparison between DLA and MLLA correlators.

2. Evolution equations for jet generating functionals

Consider (see figure 1) a jet generated by a parton of type A (quark or gluon) with 4-

momentum p = (p0 ≡ E, ~p).

A generating functional Z(E,Θ; {u}) can be constructed [8], which describes the az-

imuth averaged parton content of a jet of energy E with a given opening half-angle Θ; by
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Figure 1: Two-particle correlations and Angular Ordering

virtue of the exact angular ordering (MLLA), it satisfies the following integro-differential

evolution equation [2]

d

d ln Θ
ZA (p,Θ; {u}) =

1

2

∑

B,C

∫ 1

0
dz Φ

B[C]
A (z)

αs

(
k2
⊥

)

π
(
ZB

(
zp,Θ; {u}

)
ZC

(
(1 − z)p,Θ; {u}

)
− ZA

(
p,Θ; {u}

))
; (2.1)

in (2.1), z and (1−z) are the energy-momentum fractions carried away by the two offspring

of the A → BC parton decay described by the standard one loop splitting functions

Φq[g]
q (z) = CF

1 + z2

1 − z
, Φg[q]

q (z) = CF
1 + (1 − z)2

z
, (2.2)

Φq[q̄]
g (z) = TR

(
z2 + (1 − z)2

)
, Φg[g]

g (z) = 2CA

(
1 − z

z
+

z

1 − z
+ z(1 − z)

)
, (2.3)

CA = Nc, CF = (N2
c − 1)/2Nc, TR = 1/2, (2.4)

where Nc is the number of colors; ZA in the integral in the r.h.s. of (2.1) accounts for 1-loop

virtual corrections, which exponentiate into Sudakov form factors.

αs(q
2) is the running coupling constant of QCD

αs(q
2) =

4π

4Ncβ ln q2

Λ2
QCD

, (2.5)

where ΛQCD ≈ a few hundred MeV ’s is the intrinsic scale of QCD, and

β =
1

4Nc

(11

3
Nc −

4

3
nfTR

)
(2.6)

is the first term in the perturbative expansion of the β function, nf the number of light

quark flavors.
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If the radiated parton with 4-momentum k = (k0, ~k) is emitted with an angle Θ with

respect to the direction of the jet, one has (k⊥ is the modulus of the transverse trivector ~k⊥
orthogonal to the direction of the jet) k⊥ ' |~k|Θ ≈ k0Θ ≈ zEΘ when z ¿ 1 or (1 − z)EΘ

when z → 1, and a collinear cutoff k⊥ ≥ Q0 is imposed.

In (2.1) the symbol {u} denotes a set of probing functions ua(k) with k the 4-mo-

mentum of a secondary parton of type a. The jet functional is normalized to the total jet

production cross section such that

ZA(p,Θ;u ≡ 1) = 1; (2.7)

for vanishingly small opening angle it reduces to the probing function of the single initial

parton

ZA(p,Θ → 0; {u}) = uA(k ≡ p). (2.8)

To obtain exclusive n-particle distributions one takes n variational derivatives of ZA

over u(ki) with appropriate particle momenta, i = 1 . . . n, and sets u ≡ 0 after wards;

inclusive distributions are generated by taking variational derivatives around u ≡ 1.

2.1 Inclusive particle energy spectrum

The probability of soft gluon radiation off a color charge (moving in the z direction) has

the polar angle dependence

sin θ dθ

2(1 − cos θ)
=

d sin(θ/2)

sin(θ/2)
' dθ

θ
;

therefore, we choose the angular evolution parameter to be

Y = ln
2E sin(Θ/2)

Q0
⇒ dY =

d sin(Θ/2)

sin(Θ/2)
; (2.9)

this choice accounts for finite angles O(1) up to the full opening half-angle Θ = π, at which

YΘ=π = ln
2E

Q0
,

where 2E is the center-of-mass annihilation energy of the process e+e− → qq̄. For small

angles (2.9) reduces to

Y ' ln
EΘ

Q0
, Θ ¿ 1,

d

dY
=

d

d ln Θ
, (2.10)

where EΘ is the maximal transverse momentum of a parton inside the jet with opening

half-angle Θ.

To obtain the inclusive energy distribution of parton a emitted at angles smaller than

Θ with momentum ka, energy Ea = xE in a jet A, i.e. the fragmentation function D a
A(x, Y ),

we take the variational derivative of (2.1) over ua(k) and set u ≡ 1 (which also corresponds

to Z = 1) according to

xDa
A(x, Y ) = Ea

δ

δu(ka)
ZA (k,Θ; {u})

∣∣∣
u=1

, (2.11)

where we have chosen the variables x and Y rather than ka and Θ.
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Two configurations must be accounted for: B carrying away the fraction z and C the

fraction (1 − z) of the jet energy, and the symmetric one in which the role of B and C is

exchanged. Upon functional differentiation they give the same result, which cancels the

factor 1/2. The system of coupled linear integro-differential equations that comes out is

d

dY
xDa

A(x, Y ) =

∫ 1

0
dz

∑

B

ΦB
A(z)

αs

π

[
x

z
Da

B

(x

z
, Y + ln z

)
− 1

2
xDa

A(x, Y )

]
. (2.12)

We will be interested in the region of small x where fragmentation functions behave as

xD(x)
x¿1∼ ρ(ln x), (2.13)

with ρ a smooth function of ln x. Introducing logarithmic parton densities

Q = xD a
Q(x, Y ), G = xD a

G(x, Y ), (2.14)

respectively for quark and gluon jets, we obtain from (2.12)

Qy ≡ dQ

dy
=

∫ 1

0
dz

αs

π
Φg

q(z)

[(
Q(1 − z) − Q

)
+ G(z)

]
, (2.15)

Gy ≡ dG

dy
=

∫ 1

0
dz

αs

π

[
Φg

g(z)
(
G(z) − zG

)
+ nf Φq

g(z)
(
2Q(z) − G

)]
, (2.16)

where, for the sake of clarity, we have suppressed x and Y and only kept the dependence

on the integration variable z, e.g.,

G(z) ≡ x

z
Da

G

(
x

z
, Y + ln z

)
, (2.17)

such that

G = G(1), Q = Q(1). (2.18)

Some comments are in order concerning these equations.

• We chose to express the derivative with respect to the jet opening angle Θ on the

l.h.s. of equations (2.15) (2.16) in terms of

y ≡ Y − ` = ln
xEΘ

Q0
= ln

EaΘ

Q0
, ` ≡ ln

1

x
= ln

E

Ea
, (2.19)

instead of Y defined in (2.9). The variable y is convenient for imposing the collinear

cutoff condition k⊥ ' xE sin θ ≥ Q0 since, for small angles, it translates simply into

y ≥ 0;

• to obtain (2.15) one proceeds as follows. When B is a quark in (2.12) , since A is

also a quark, one gets two contributions: the real contribution Da
B=q and the virtual

one −1
2Da

A=q;

– in the virtual contribution, since Φq
q(z) = Φg

q(1− z), the sum over B cancels the

factor 1/2;

– 7 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
9

– in the real contribution, when it is a quark, it is associated with Φq
q(z) and, when

it is a gluon, with Φg
q(z); we use like above the symmetry Φq

q(z) = Φg
q(1 − z) to

only keep one of the two, namely Φq
q, at the price of changing the corresponding

D(z) into D(1 − z);

• to obtain (2.16), one goes along the following steps; now A = g and B = q or g;

– as before, the subtraction term does not depend on B and is summed over B = q

and B = g, with the corresponding splitting functions Φq
g and Φg

g. In the term

Φg
g, using the property Φg

g(z) = Φg
g(1 − z) allows us to replace 1

2

∫ 1
0 dzΦg

g(z) =∫ 1
0 zΦg

g(z). This yields upon functional differentiation the −zG term in (2.16).

For B = q, 2nf flavors (nf flavors of quarks and nf flavors of anti-quarks) yield

identical contributions, which, owing to the initial factor 1/2 finally yields nf ;

– concerning the real terms, Φg
gG in (2.16) comes directly from Φg

g
x
z Da

g in (2.12).

For B = q, 2nf flavors of quarks and antiquarks contribute equally since at

x ¿ 1 sea quarks are produced via gluons.1 This is why we have multiplied

Q(z) by 2nf in (2.16).

Now we recall that both splitting functions Φg
q(z) and Φg

g are singular at z = 0; the

symmetric gluon-gluon splitting Φg
g(z) is singular at z = 1 as well. The latter singularity

in (2.16) gets regularized by the factor
(
G(z) − zG

)
which vanishes at z → 1. This

regularization can be made explicit as follows

∫ 1

0
dzΦg

g(z) (G(z) − zG) ≡
∫ 1

0
dzΦg

g(z) [(1 − z)G(z) + z(G(z) − G)] ;

since Φg
g(z) = Φg

g(1− z), while leaving the first term
∫ 1
0 dzΦg

g(z)(1− z)G(z) unchanged, we

can rewrite the second

∫ 1

0
dzΦg

g(z)z(G(z) − G) =

∫ 1

0
dzΦg

g(z)(1 − z)(G(1 − z) − G),

such that, re-summing the two, (1 − z) gets factorized and one gets

∫ 1

0
dzΦg

g(z) (G(z) − zG) =

∫ 1

0
dzΦg

g(z)(1 − z) [G(z) + (G(1 − z) − G) (2.20)

Terms proportional to G(z) on r.h.s. of equations (2.15) (2.16) remain singular at

z → 0 and produce enhanced contributions due to the logarithmic integration over the

region x ¿ z ¿ 1.

Before discussing the MLLA evolution equations following from (2.15) and (2.16), let

us derive similar equation for two particle correlations inside one jet.

1Accompanied by a relatively small fraction O(
√

αs) of (flavor singlet) sea quark pairs, while the valence

(non-singlet) quark distributions are suppressed as O(x).

– 8 –
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2.2 Two-parton correlations

We study correlation between two particles with fixed energies x1 = ω1/E, x2 = ω2/E

(x1 > x2) emitted at arbitrary angles Θ1 and Θ2 smaller than the jet opening angle Θ. If

these partons are emitted in a cascading process, then Θ1 ≥ Θ2 by the AO property; see

figure 1.

2.2.1 Equations

Taking the second variational derivative of (2.1) with respect to u(k1) and u(k2), one gets

a system of equations for the two-particle distributions G(2) and Q(2) in gluon and quark

jets, respectively:

Q(2)
y =

∫
dz

αs

π
Φg

q(z)

[
G(2)(z)+

(
Q(2)(1−z)− Q(2)

)
+ G1(z)Q2(1−z)+G2(z)Q1(1−z)

]
,

(2.21)

G(2)
y =

∫
dz

αs

π
Φg

g(z)

[(
G(2)(z)−zG(2)

)
+ G1(z)G2(1−z)

]

+

∫
dz

αs

π
nfΦq

g(z)

[(
2Q(2)(z)−G(2)

)
+2Q1(z)Q2(1−z)

]
. (2.22)

As before, the notations have been lightened to a maximum, such that Q(2) = Q(2)(z =

1), G(2) = G(2)(z = 1). More details about the variables on which Q(2) depends are given

in subsection 3.2. Now using (2.15) we construct the y-derivative of the product of single

inclusive spectra. Symbolically,

(Q1Q2)y = Q2

∫ 1

0
dz

αs

π
Φg

q(x)
[(

Q1(1 − z) − Q1

)
+ G1(z)

]

+Q1

∫ 1

0
dz

αs

π
Φg

q(x)
[(

Q2(1 − z) − Q2

)
+ G2(z)

]
. (2.23)

Subtracting this expression from (2.21) we get

(Q(2) − Q1Q2)y =

∫
dz

αs

π
Φg

q(z)

[
G(2)(z) +

(
Q(2)(1 − z) − Q(2)

)
(2.24)

+(G1(z) − Q1)(Q2(1 − z) − Q2) + (G2(z) − Q2)(Q1(1 − z) − Q1)

]
.

For the gluon jet, making use of (2.16) we analogously obtain from (2.22)

(G(2) − G1G2)y =

∫
dz

αs

π
Φg

g(z)
[(

G(2)(z) − zG(2)
)

+
(
G1(z) − G1

)(
G2(1 − z) − G2

)]

+

∫
dz

αs

π
nfΦq

g(z)
[
2
(
Q(2)(z) − Q1(z)Q2(z)

)
−

(
G(2) − G1G2

)

+
(
2Q1(z) − G1

)(
2Q2(1 − z) − G2

)]
. (2.25)

The combinations on the l.h.s. of (2.24) and (2.25) form correlation functions which vanish

when particles 1 and 2 are produced independently. They represent the combined probabil-

ity of emitting particle 2 with `2, y2, . . . when particle 1 with `1, y1, . . . is emitted, too. This

way of representing the r.h.s. of the equations is convenient for estimating the magnitude

of the various terms.

– 9 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
9

3. Soft particle approximation

In the standard DGLAP region x = O(1) (` = O(0)), the x dependence of parton distri-

butions is fast while scaling violation is small

∂`DG,Q(`, y)

DG,Q
≡ ψ` = O(1),

∂yDG,Q(`, y)

DG,Q
≡ ψy = O(αs). (3.1)

With x decreasing, the running coupling gets enhanced while the x-dependence slows

down so that, in the kinematical region of the maximum (“hump”) of the inclusive spectrum

the two logarithmic derivatives become of the same order:

ψy ∼ ψ` = O(
√

αs), y ' ` ' 1

2
Y. (3.2)

This allows to significantly simplify the equations for inclusive spectra (2.15) (2.16) and

two-particle correlations (2.24) (2.25) for soft particles, xi ¿ 1, which determine the bulk of

parton multiplicity in jets. We shall estimate various contributions to evolution equations

in order to single out the leading and first sub-leading terms in
√

αs to construct the MLLA

equations.

3.1 MLLA spectrum

We start by recalling the logic of the MLLA analysis of the inclusive spectrum. In fact (2.15)

(2.16) are identical to the DGLAP evolution equations but for one detail: the shift ln z in

the variable Y characterizing the evolution of the jet hardness Q. Being the consequence of

exact angular ordering, this modification is negligible, within leading log accuracy in αsY ,

for energetic partons when | ln z| < | ln x| = O(1). For soft particles, however, ignoring this

effect amounts to corrections of order O((αs ln2 x)n) that drastically modify the character

of the parton yield in time-like jets as compared with space-like deep inelastic scattering

(DIS) parton distributions.

The MLLA logic consists in keeping the leading term and the first next-to-leading term

in the right hand sides of evolution equations (2.15) (2.16). Meanwhile, the combinations

(Q(1 − z) − Q) in (2.15) and (G(1 − z) − G) in (2.20) produce next-to-MLLA corrections

that can be omitted; indeed, in the small-x region the parton densities G(x) and Q(x) are

smooth functions (see 2.13) of ln x and we can estimate, say, G(1− z)−G, using (2.13), as

G(1 − z) − G ≡ G

(
x

1 − z
, Y + ln(1 − z)

)
− G

(
x, Y

)
' ψ` G ln(1 − z).

Since ψ` ∼
√

αs (see 4.11), combined with αs this gives a next-to-MLLA correction O(α
3/2
s )

to the r.h.s. of (2.16). Neglecting these corrections we arrive at

Qy =

∫ 1

x
dz

αs

π
Φg

q(z)G(z), (3.3)

Gy =

∫ 1

x
dz

αs

π

[
(1 − z)Φg

g(z)G(z) + nfΦq
g(z)

(
2Q(z) − G

)]
. (3.4)
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To evaluate (3.3), we rewrite (see (2.2))

Φg
q(z) = CF

(
2

z
+ z − 2

)
;

the singularity in 1/z yields the leading (DLA) term; since G(z) is a smoothly varying

function of ln z (see (2.13) (2.14)), the main z dependence of this non-singular part of the

integrand we only slightly alter by replacing (z − 2)G(z) by (z − 2)G, which yields2

Qy =

∫ 1

x
dz

αs

π
CF

(
2

z
G(z) + (z − 2)G

)
=

CF

Nc

∫ 1

x

dz

z

2Ncαs

π
G(z) − 3

4

CF

Nc

2Ncαs

π
G (3.5)

where αs = αs(ln z) in the integral term while in the second, it is just a constant. To get

the last term in (3.5) we used ∫ 1

0
dz(z − 2) = −3

2
. (3.6)

To evaluate (3.4) we go along similar steps. Φq
g being a regular function of z, we replace

2Q(z) − G with 2Q − G; Φg
g(z) also reads (see (2.2))

Φg
g(z) = 2CA

(
1

z(1 − z)
− 2 + z(1 − z)

)
;

the singularity in 1/(1 − z) disappears, the one in 1/z we leave unchanged, and in the

regular part we replace G(z) with G. This yields

Gy =

∫ 1

x
dz

αs

π

[
2CA

(
1

z
G(z) + (1 − z)(−2 + z(1 − z))G

)

+ nfTR

(
z2 + (1 − z)2

)
(2Q − G)

]

= 2CA

∫ 1

x

dz

z

αs

π
G(z) −

(
11

6
CA +

2

3
nfTR

)
αs

π
G +

4

3
nfTR

αs

π
Q; (3.7)

the comparison of the singular leading (DLA) terms of (3.5) and (3.7) shows that

Q
DLA
=

CF

CA
G, (3.8)

which one uses to replace Q accordingly, in the last (sub-leading) term of (3.7) (the cor-

rections would be next-to-MLLA (see 3.16) and can be neglected). This yields the MLLA

equation for G where we set CA = Nc:

Gy =

∫ 1

x

dz

z

2Ncαs

π
G(z) − a

2Ncαs

π
G (3.9)

with

a =
11

12
+

nfTR

3Nc

(
1 − 2CF

Nc

)
=

1

4Nc

[
11

3
Nc +

4

3
nfTR

(
1 − 2CF

Nc

)]
nf =3
= 0.935. (3.10)

2Since x ¿ 1, the lower bound of integration is set to “0” in the sub-leading pieces of (3.3) and (3.4).
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a parametrizes “hard” corrections to soft gluon multiplication and sub-leading g → qq̄

splittings.3

We conveniently define the integration variables z and Θ′ satisfying x ≤ z ≤ 1 and

xE/Q0 ≤ Θ′ ≤ Θ through4

`′ = ln
z

x
and y′ = ln

xEΘ′

Q0
(3.11)

The condition x ≤ z ≤ 1 is then equivalent to 0 ≤ `′ ≤ ` and xE/Q0 ≤ Θ′ ≤ Θ is

0≤y′≤y. Therefore,

∫ 1

x

dz

z
=

∫ `

0
d`′,

∫ Θ

Q0/xE

dΘ′

Θ′
=

∫ y

0
dy.

We end up with the following system of integral equations of (3.5) and (3.9) for the

spectrum of one particle inside a quark and a gluon jet

Q(`, y) = δ(`) +
CF

Nc

∫ `

0
d`′

∫ y

0
dy′γ2

0(`′ + y′)
(
1 − 3

4
δ(`′ − `)

)
G(`′, y′), (3.12)

G(`, y) = δ(`) +

∫ `

0
d`′

∫ y

0
dy′γ2

0(`′ + y′)
(
1 − aδ(`′ − `)

)
G(`′, y′) (3.13)

that we write in terms of the anomalous dimension

γ0 = γ0(αs) =

√
2Ncαs

π
(3.14)

which determines the rate of multiplicity growth with energy. Indeed, using (2.5), (2.19)

and (3.14) one gets

γ2
0(zEΘ′) =

1

β ln
(

zEΘ′

ΛQCD

) =
1

β
(
ln z

x + xEΘ′

Q0
+ λ

) ≡ γ2
0(`′ + y′) =

1

β(`′ + y′ + λ)
.

with λ = ln(Q0/ΛQCD). In particular, for z = 1 and Θ′ = Θ one has

γ2
0 =

1

β(` + y + λ)
=

1

β(Y + λ)
, ` + y = Y. (3.15)

The DLA relation (3.8) can be refined to

Q(`, y) =
CF

CA

[
1 +

(
a − 3

4

)(
ψ` + a

(
ψ2

` + ψ` `

))
+ O(γ2

0)

]
G(`, y), (3.16)

where

ψ` =
1

G(`, y)

dG(`, y)

d`
, ψ2

` + ψ` ` =
1

G(`, y)

d2G(`, y)

d`2
.

3The present formula for a differs from (47) in [12] because, there, we defined TR = nf/2, instead of

TR = 1/2 here.
4The lower bound on Θ′ follows from the kinematical condition k⊥ ≈ xEΘ′ ≥ Q0
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Indeed subtracting (3.13) and (3.12) gives

Q(`, y) − CF

Nc
G(`, y) =

CF

Nc

(
a − 3

4

)∫ y

0
dy′γ2

0G(`, y′); (3.17)

iterating twice (3.13) yields
∫ y

0
dy′γ2

0G(`, y′) = G` + aG` ` + O(γ2
0) = G(`, y)

(
ψ` + a

(
ψ2

` + ψ` `

))
+ O(γ2

0)

which is then plugged in (3.17) to get (3.16). ψ2
` + ψ` ` can be easily estimated from

subsection 4.2 to be O(γ2
0). In MLLA, (3.16) reduces to

Q(`, y) =
CF

CA

[
1 +

(
a − 3

4

)
ψ`(`, y) + O(γ2

0)
]
G(`, y). (3.18)

3.2 MLLA correlation

We estimate analogously the magnitude of various terms on the r.h.s. of (2.24) and (2.25).

Terms proportional to Q2(1−z)−Q2 and to Q1(1−z)−Q1 in the second line of (2.24) will

produce next-to-MLLA corrections that we drop out. In the first line, Q(2)(1 − z) − Q(2)

(Q(2)(z) is also a smooth function of ln z) will also produce higher order corrections that

we neglect. We get

(Q(2) − Q1Q2)y =

∫ 1

x1

dz
αs

π
Φg

q(z) G(2)(z), (3.19)

where we consider z≥x1≥x2. In the first line of (2.25) we drop for identical reasons the

term proportional to G2(1 − z) − G2, and the term G(2)(z) − zG(2) is regularized in the

same way as we did for G(z) − zG in (2.16). In the second non-singular line, we use the

smooth behavior of φq
g(z) to neglect the z dependence in all G(2), Q(2), G and Q so that it

factorizes and gives

(G(2) − G1G2)y =

∫ 1

x1

dz
αs

π
(1 − z)Φg

g(z) G(2)(z)

+

∫ 1

0
dz

αs

π
nfΦq

g(z)

[
2
(
Q(2) − Q1Q2

)
−

(
G(2) − G1G2

)

+ (2Q1 − G1)(2Q2 − G2)

]
. (3.20)

At the same level of approximation, we use the leading order relations

Qi =
CF

Nc
Gi, Q(2) − Q1Q2 =

CF

Nc

(
G(2) − G1G2

)
; (3.21)

the last will be proved consistent in the following. This makes the equation for the corre-

lation in the gluon jet self-contained, we then get

(G(2) − G1G2)y =

∫ 1

x1

dz
αs

π
(1 − z)Φg

g(z) G(2)(z) (3.22)

+

∫ 1

0
dz

αs

π
nfΦq

g(z)

(
2
CF

Nc
− 1

)[(
G(2) − G1G2

)
+

(
2
CF

Nc
− 1

)
G1G2

]
.
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Like for the spectra, we isolate the singular terms 2CF /z and 2CA/z(1 − z) of the

splitting functions φg
q and φg

g respectively (see (2.2) and (2.3)). We then write (3.19)

and (3.22) as follows

(Q(2) − Q1Q2)y =

∫ 1

x1

dz
αs

π
2CF

[
1

z
G(2)(z) +

1

2
(z − 2)G(2)

]
, (3.23)

(G(2) − G1G2)y =

∫ 1

x1

dz
αs

π
2CA

[
1

z
G(2)(z) + (1 − z)(−2 + z(1 − z))G(2)

]

+

∫ 1

0
dz

αs

π
nfTR

[
z2 + (1 − z)2

](
2
CF

Nc
− 1

)

×
[(

G(2) − G1G2

)
+

(
2
CF

Nc
− 1

)
G1G2

]
, (3.24)

which already justifies a posteriori the last equation in (3.21). One then proceeds with

the z integration of the polynomials that occur in the non-singular terms (that of (3.23)

was already written in (3.6)). For the term ∝ G(2) which we factorize by 2CA, we find

(see (3.10) for the expression of a)

∫ 1

0
dz

[
(1 − z)

(
− 2 + z(1 − z)

)
+

nfTR

2CA

(
z2 + (1 − z)2

)(
2
CF

Nc
− 1

)]
= −a, (3.25)

while in the one ∝ G1G2 we have simply

nfTR

CA

(
1−2

CF

Nc

)(
1− CF

Nc

)∫ 1

0
dz

[
z2 + (1 − z)2

]
=

2nfTR

3CA

(
1−2

CF

Nc

)(
1− CF

Nc

)
. (3.26)

Introducing

b =
11

12
− nfTR

3Nc

(
1 − 2CF

Nc

)2

=
1

4Nc

[
11

3
Nc −

4

3
nfTR

(
1 − 2

CF

Nc

)2]
nf =3
= 0.915 (3.27)

allows us to express (3.26) with CA = Nc as

a − b =
2nfTR

3Nc

(
1 − 2CF

Nc

)(
1 − CF

Nc

)
nf =3
= 0.02, (3.28)

such that (3.23) and (3.24) can be easily rewritten in the form

(
Q(2) − Q1Q2

)

y
=

CF

Nc

∫ 1

x1

dz

z

2Ncαs

π
G(2)(z) − 3

4

CF

Nc

2Ncαs

π
G(2), (3.29)

(
G(2) − G1G2

)
y

=

∫ 1

x1

dz

z

2Ncαs

π
G(2)(z) − a

2Ncαs

π
G(2) + (a − b)

2Ncαs

π
G1G2. (3.30)

Again, αs = αs(ln z) in the leading contribution, while in the sub-leading ones it is a

constant. We now introduce the following convenient variables and notations to rewrite

correlation evolution equations

`i = ln
1

xi
= ln

E

ωi
, i = 1, 2 (3.31)
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yi = ln
ωiΘ

Q0
= ln

xiEΘ

Q0
= Y − `i and η = ln

x1

x2
= `2 − `1 = y1 − y2 > 0. (3.32)

The transverse momentum of parton with energy zE is k⊥ ≈ zEΘ1. We conveniently

define the integration variables z and Θ1 satisfying x1 ≤ z ≤ 1 and Θ2 ≤ Θ1 ≤ Θ with

Θ2≥(Θ2)min =Q0/ω2 through

` = ln
z

x1
, y = ln

x2EΘ1

Q0
, (3.33)

then we write

γ2
0(zEΘ1) =

1

β
(
ln z

x1
+ ln x2EΘ1

Q0
+ ln x1

x2
+ λ

) ≡ γ2
0(` + y) =

1

β(` + y + η + λ)
. (3.34)

In particular, for z = 1 and Θ1 = Θ we have

γ2
0 =

1

β(`1 + y2 + η + λ)
=

1

β(Y + λ)
, `1 + y2 + η = Y.

The condition x1 ≤ z ≤ 1 translates into 0 ≤ ` ≤ `1, while (Θ2)min ≤ Θ1 ≤ Θ becomes

0≤y≤y2. Therefore,
∫ 1

x1

dz

z
=

∫ `1

0
d` and

∫ Θ

Q0/ω2

dΘ1

Θ1
=

∫ y2

0
dy.

One gets finally the MLLA system of equations of (3.29) (3.30) for quark and gluon

jets correlations

Q(2)(`1, y2, η) − Q1(`1, y1)Q2(`2, y2) =
CF

Nc

∫ `1

0
d`

∫ y2

0
dy γ2

0(` + y)
[
1 − 3

4
δ(` − `1)

]

×G(2)(`, y, η), (3.35)

G(2)(`1, y2, η) − G1(`1, y1)G2(`2, y2) =

∫ `1

0
d`

∫ y2

0
dy γ2

0(` + y)
[
1 − aδ(` − `1)

]
G(2)(`, y, η)

(3.36)

+(a − b)

∫ y2

0
dy γ2

0(`1 + y)G(`1, y + η)G(`1 + η, y).

In the last line of (3.36) we have made use of (3.32) to write

G1 ≡ G(`1, y1) = G(`1, y2 + η), G2 ≡ G(`2, y2) = G(`1 + η, y2). (3.37)

The first term in (3.35) and (3.36) represents the DLA contribution; the terms pro-

portional to δ functions or to a, b, represent MLLA corrections. a − b appearing in (3.36)

and defined in (3.28) is proportional to nf , positive and color suppressed.

4. Two-particle correlation in a gluon jet

4.1 Iterative solution

Since equation (3.36) for a gluon jet is self contained, it is our starting point. We define

the normalized correlator Cg by

G(2) = Cg(`1, y2, η) G1 G2, (4.1)
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where G1 and G2 are expressed in (3.37). Plugging (4.1) into (3.36) one gets (see ap-

pendix A) the following expression for the correlator

Cg − 1 =
1 − δ1 − b

(
ψ1,` + ψ2,` − [βγ2

0 ]
)
− [aχ` + δ2]

1 + ∆ + δ1 +
[
a

(
χ` + [βγ2

0 ]
)

+ δ2

] (4.2)

which is to be evaluated numerically. We have introduced the following notations and

variables

χ = ln Cg, χ` =
dχ

d`
, χy =

dχ

dy
; (4.3)

ψ1 = ln G1, ψ1,` =
1

G1

dG1

d`
, ψ1,y =

1

G1

dG1

dy
; (4.4)

ψ2 = ln G2, ψ2,` =
1

G2

dG2

d`
, ψ2,y =

1

G2

dG2

dy
; (4.5)

∆ = γ−2
0

(
ψ1,`ψ2,y + ψ1,yψ2,`

)
; (4.6)

δ1 = γ−2
0

[
χ`(ψ1,y + ψ2,y) + χy(ψ1,` + ψ2,`)

]
; (4.7)

δ2 = γ−2
0

(
χ`χy + χ` y

)
. (4.8)

As long as Cg is changing slowly with ` and y, (4.2) can be solved iteratively. The expressions

of ψ` and ψy, as well as the numerical analysis of the other quantities are explicitly given

in appendices D.2 and E for λ = 0 (Q0 = ΛQCD), the so called “limiting spectrum”.

Consequently, (4.2) will be computed in the same limit.

4.2 Magnitude estimate of various contributions

To estimate the relative role of various terms in (4.2) we can make use of a simplified model

for the MLLA spectrum in which one neglects the variation of αs, hence of γ0 in (3.9). It

becomes, after differentiating with respect to `

G` y = γ2
0

(
G − aG`

)
. (4.9)

The solution of this equation is the function for γ2
0 = const (see appendix C for details)

G(`, y)
x¿1' exp

(
2γ0

√
` y − aγ2

0 y
)
. (4.10)

The subtraction term ∝ a in (4.10) accounts for hard corrections (MLLA) that shifts

the position of the asymptotic DLA peak Y/2 toward larger values of ` (smaller x) and par-

tially guarantees the energy balance during soft gluons cascading (see [2, 4] and references

therein). The position of the maximum follows from (4.10)

`max =
Y

2
(1 + aγ0).

From (4.10) one gets

ψ` = γ0

√
y

`
, ψy = γ0

√
`

y
− aγ2

0 , ψ` y ∼ ψ` ` ∼ ψy y = O(γ3
0), `−1 ∼ y−1 = O(γ2

0)

(4.11)
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and the function ∆ in (4.6) becomes

∆ =

(√
y1`2

`1y2
+

√
`1y2

y1`2

)
− aγ0

(√
y1

`1
+

√
y2

`2

)

= 2cosh(µ1 − µ2) − aγ0(e
µ1 + eµ2); µi =

1

2
ln

yi

`i
. (4.12)

We see that ∆ = O(1) and depends on the ratio of logarithmic variables ` and y. One step

further is needed before we can estimate the order of magnitude of χ`, χy and χ` y. Indeed,

the leading contribution to these quantities is obtained by taking the leading (DLA) piece

of (4.2), that is

χ
DLA' ln

(
1 +

1

1 + ∆

)
;

then, it is easy to get

χ` = − ∆`

(1 + ∆)(2 + ∆)
, χy = − ∆y

(1 + ∆)(2 + ∆)
;

we have roughly

χ` ∝ µ`, χy ∝ µy, χ` y ∝ µ` µy;

since µi,` = µi,y = O(γ2
0) one gets

χ` ∼ χy = O(γ2
0), χ` y ∼ χ`χy = O(γ4

0), (4.13)

which entails for the corrections terms δ1 and δ2 in (4.7) (4.8)

δ1 = O(γ0), δ2 = O(γ2
0). (4.14)

The term δ1 constitutes a MLLA correction while δ2 as well as other terms that are displayed

in square brackets in (4.2) are of order γ2
0 and are, formally speaking, beyond the MLLA

accuracy.

4.3 MLLA reduction of (4.2)

Dropping O(γ2
0) terms , the expression for the correlator would simplify to

Cg − 1
MLLA≈ 1 − b (ψ1,` + ψ2,`) − δ1

1 + ∆ + δ1
. (4.15)

4.4 Cg ≥ 0 in the soft approximation

Cg must obviously be positive. By looking at Cg ≥ 0 one determines the region of applica-

bility of our soft approximation. Using (4.15), the condition reads

2 + ∆ > b(ψ1,` + ψ2,`). (4.16)

For the sake of simplicity, we employ the model (4.10) (4.11) (4.12), this gives

2
(
1 + cosh(µ1 − µ2)

)
> γ0(a + b)

(
eµ1 + eµ2

)
, (4.17)
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which translates into √
`1

y1
+

√
`2

y2
> γ0 (a + b). (4.18)

For `1, `2 ¿ Y we can set y1 ' y2 ' Y and, using γ2
0 ' 1/βY ,5 we get the condition

√
`1 +

√
`2 >

a + b√
β

' 2.1, (4.19)

which is satisfied as soon as `1 > 1 (`2 > `1); so, for x1 . 0.4, x2 < x1, the correlation C is

positive.

4.5 The sign of (Cg − 1)

In the region of relatively hard particles (Cg − 1) becomes negative. To find out at which

value of ` it happens, we use the simplified model and take, for the sake of simplicity,

`1 = `2 = `±.

The condition 1 = δ1 +b
(
ψ1,` +ψ2,`

)
, using (2.19) (3.15) (4.11) and neglecting δ1 which

vanishes at `1 ≈ `2 reads

1 − bγ0 · 2
√

Y − `±
`±

= 0 ⇔ `± =
Mg

1 +
Mg

Y

, Mg =
4b2

β
' 4.5. (4.20)

Thus, in the Y → ∞ limit, the correlation between two equal energy partons in a gluon jet

turns negative at a fixed value, x > x± ' exp(4.5) = 1/90. For finite energies, this energy

is essentially larger; in particular, for Y = 5.2 (which corresponds to LEP-I energy) (4.20)

gives `± ' 2.4 (x± ' 1/11).

For the Tevatron, let us for instance take the typical value Y = 6.0, one has `± ' 2.6

and finally, for the LHC we take the typical one, Y = 7.5, one gets the corresponding

`± ' 2.8. This is confirmed numerically in figures 2, 7 and 9.

5. Two-particle correlations in a quark jet

5.1 Iterative solution

We define the normalized correlator Cq by

Q(2) = Cq(`1, y2, η) Q1 Q2, (5.1)

where Q1 and Q2 are expressed like in (3.37) for G1 and G2. By differentiating (3.35) with

respect to `1 and y2, one gets (see appendix B)

Cq − 1 =

Nc

CF
Cg

[
1 − 3

4

(
ψ1,` + ψ2,` + [χ`] − [βγ2

0 ]
)]

CF

Nc

G1

Q1

CF

Nc

G2

Q2
− δ̃1 − [δ̃2]

∆̃ +
[
1 − 3

4

(
ψ1,` − [βγ2

0 ]
)]

CF

Nc

G1

Q1
+

[
1 − 3

4

(
ψ2,` − [βγ2

0 ]
)]

CF

Nc

G2

Q2
+ δ̃1 + [δ̃2]

, (5.2)

5For nf = 3, β = 0.75.
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which is used for numerical analysis. Gi/Qi is computed using (3.16). The terms O(γ2
0)

are the ones that can be neglected when staying at MLLA (see 5.2). We have introduced,

in addition to (4.3)-(4.8), the following notations

∆̃ = γ−2
0

(
ϕ1,`ϕ2,y + ϕ1,yϕ2,`

)
, (5.3)

δ̃1 = γ−2
0

[
σ`(ϕ1,y + ϕ2,y) + σy(ϕ1,` + ϕ2,`)

]
, (5.4)

δ̃2 = γ−2
0

(
σ`σy + σ` y

)
, (5.5)

with

ϕk = ln Qk, σ = ln Cq. (5.6)

Accordingly, (5.2) will be computed for λ = 0, the analysis of the previous functions is

done in appendix E.

5.2 MLLA reduction of (5.2)

Using (3.18), which entails CF

Nc

Gi

Qi
' 1 −

(
a − 3

4

)
ψi,` + O(γ2

0), reduces (B.4) to

Cq − 1 =

Nc

CF
Cg

[
1 − a

(
ψ1,` + ψ2,`

)
− 3

4 [χ` − βγ2
0 ]

]
− Cq(δ̃1 + [δ̃2])

2 + ∆̃ − a
(
ψ1,` + ψ2,`

)
+ [32βγ2

0 ]

=

Nc

CF
Cg

[
1 − a

(
ψ1,` + ψ2,`

)
− 3

4 [χ` − βγ2
0 ]

]
− δ̃1 − [δ̃2]

2 + ∆̃ − a
(
ψ1,` + ψ2,`

)
+ [32βγ2

0 ] + δ̃1 + δ̃2

. (5.7)

As demonstrated in appendix B.2, ∆̃ = ∆ + O(γ2
0) and

Cq(δ̃1 + δ̃2) '
Nc

CF
Cg(δ1 + δ2); (5.8)

and (5.7) becomes

Cq − 1 ≈ Nc

CF

Cg

[
1 − a

(
ψ1,` + ψ2,`

)
− 3

4 [χ` − βγ2
0 ] − δ1 − [δ2]

]

2 + ∆ − a
(
ψ1,` + ψ2,`

)
+ [32βγ2

0 ]]
. (5.9)

Would we neglect, according to (4.13) (4.14), next to MLLA terms, which amounts to

dropping all O(γ2
0) corrections, (5.7) would simply reduce to

Cq − 1
MLLA≈ Nc

CF

Cg

[
1 − a

(
ψ1,` + ψ2,`

)]
− δ1

2 + ∆ − a
(
ψ1,` + ψ2,`

)
+ δ1

. (5.10)

Furthermore, comparing (5.9) and (4.15) and using the magnitude estimates of sub-

section 4.2 allows to make an expansion in the small O(γ0) corrections δ1, ψ1,` and ψ2,` to

get

Cq − 1

Cg − 1

MLLA' Nc

CF

[
1 + (b − a)(ψ1,` + ψ2,`)

1 + ∆

2 + ∆

]
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≈ Nc

CF

[
1 + (b − a)(ψ1,` + ψ2,`)

(
CDLA

g

)−1]
, (5.11)

where we have consistently used the DLA expression CDLA
g = 2+∆

1+∆ . (a−b) is given in (3.28).

The deviation of the ratio from the DLA value Nc/CF is proportional to nf , is color-

suppressed and numerically small.

5.3 Cq ≥ 0 in the soft approximation

Since we neglect NMLLA corrections and the running of αs, we can make use of (5.11) in

order to derive the positivity constraint for the quark correlator. In the r.h.s. of (5.11) we

can indeed neglect the MLLA correction in the square brackets because it is numerically

small (for instance, for γ0 ' 0.5 it is ≈ 10−3). Therefore, Cq changes sign when

Cg ≥ 1 − CF

Nc
=

5

9
≈ 1

2
,

(4.18) gets therefore replaced by
√

`1

y1
+

√
`2

y2
>

4

5
(a + 2b)γ0,

which finally, following the same steps, gives

√
`1 +

√
`2 >

4

5

a + 2b√
β

' 2.6.

The last inequality is satisfied as soon as `1 > 1.6 (`2 > `1). This condition slightly differs

from that of the gluon correlator in 4.5.

5.4 The sign of (Cq − 1)

From (5.10), Cq − 1 changes sign for

Cq − 1 ≈ Nc

CF

Cg

[
1 − a

(
ψ1,` + ψ2,`

)]

2 + ∆ − a
(
ψ1,` + ψ2,`

) > 0 (5.12)

which gives the condition

1 = a
(
ψ1,` + ψ2,`

)
.

This gives a formula identical to (4.20) with the exchange b → a; a being slightly

larger than b, we find now a parameter Mq = 4a2/β ' 4.66. The corresponding `± at

which (Cq − 1) will change sign is slightly higher than for gluons; for example at Y = 5.2,

`± ' 2.5 (x± ' 1/12), Y = 6.0, `± ' 2.7 (x± ' 1/13), Y = 7.5, `± ' 2.9 (x± ' 1/16).

This is confirmed numerically in figures 3, 8 and 10.

6. Numerical results

In order to lighten the core of the paper, only the main lines and ideas of the calculations

and the results, are given here; the numerical analysis of (MLLA and NMLLA) corrections

occurring in (4.2) and (5.2) is the object of appendix E, that we summarize in subsection 6.3

below. We present our results as functions of (`1 + `2) and (`1 − `2).
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6.1 The gluon jet correlator

In order to implement the iterative solution of the first line of (4.2), we define

Υg = ln

[
1 +

1 − b(ψ1,` + ψ2,` − [βγ2
0 ])

1 + ∆ + [aβγ2
0 ]

]
(6.1)

as the starting point of the procedure. It represents the zeroth order of the iteration for

χ ≡ ln Cg. The terms proportional to derivatives of χ in the numerator and denominator

of (4.2) are the objects of the iteration and do not appear in (6.1); the parameter ∆

depends (see (4.6)) only on the logarithmic derivatives ψ`, ψy of the inclusive spectrum G

which are determined at each step, by the exact solution (D.9) (D.10) for G demonstrated

in appendix D. The leading piece (DLA) of (6.1)

Υg
DLA
= ln

[
1 +

1

1 + ∆

]

is the one that should be used when reducing (4.2) to MLLA. We have instead con-

sistently kept sub-leading (MLLA and NMLLA) corrections in (6.1) in order to follow the

same logic that proved successful for the single inclusive spectrum.

6.2 The quark jet correlator

We start now from (5.2) and define, as for gluons

Υq = ln



1 +

Nc

CF
Cg

[
1 − 3

4

(
ψ1,` + ψ2,` + [χ` − βγ2

0 ]
)]

CF

Nc

G1

Q1

CF

Nc

G2

Q2

∆̃ +
[
1 − 3

4

(
ψ1,` − [βγ2

0 ]
)]

CF

Nc

G1

Q1
+

[
1 − 3

4

(
ψ2,` − [βγ2

0 ]
)]

CF

Nc

G2

Q2



 (6.2)

as the starting point of the iterative procedure, i.e. the zeroth order of the iteration for

σ ≡ ln Cq; it again includes MLLA (and some NMLLA) corrections. Since the iteration

concerns Cq, the terms proportional to Cg and to its derivative χ` must be present in (6.2).

All other functions are determined, as above, by the exact solution of (D.9) and (D.10) for

G.

We have replaced in the denominator of (6.2) ∆̃ with ∆, which amounts to neglecting

O(γ2
0) corrections, because the coefficient of γ−2

0 (∆̃ − ∆) is numerically very small; this

occurs for two combined reasons: it is proportional to (a − 3/4) which is small, and the

combination (ψ1,` yψ2,` + ψ2,`,`ψ1,y + ψ2,` yψ1,` + ψ1,` `ψ2,y) that appears in (B.10) is very

small (see figure 13). Accordingly,

Υq
DLA
= ln

[
1 +

Nc

CF

1

1 + ∆

]
.

We can use this simplified expression for the MLLA reduction of (5.2).
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6.3 The role of corrections; summary of appendix E

Analysis have been done separately for a gluon and a quark jet; their conclusions are very

similar.

That ψ` and ψy, which are O(γ0) should not exceed reasonable values (fixed arbitrarily

to 1) provides an interval of reliability of our calculations; for example, at LEP-I

2.5 ≤ ` ≤ 4.5 or 5 ≤ `1 + `2 ≤ 9, Y = 5.2. (6.3)

This interval is shifted upwards and gets larger when Y increases.

Υg and Υq defined in (6.1) and (6.2) and their derivatives are shown to behave smoothly

in the confidence interval (6.3).

The roles of all corrections δ1, δ2,∆ for a gluon jet, δ̃1, δ̃2, ∆̃ for a quark jet, have been

investigated individually. They stay under control in (6.3). While, in its center, their

relative values coincide with what is expected from subsection 4.2, NMLLA corrections

can become larger than MLLA close to the bounds; this could make our approximations

questionable. Two cases may occur which depend on NMLLA corrections not included

in the present frame of calculation; either they largely cancel with the included ones and

the sum of all NMLLA corrections is (much) smaller than those of MLLA: then pQCD

is trustable at Y = 5.2; or they do not, the confidence in our results at this energy

is weak, despite the fast convergence of the iterative procedure which occurs thanks to

the “accidental” observed cancellation between MLLA and those of NMLLA which are

included. The steepest descent method [10, 11], in which a better control is obtained of

MLLA corrections alone, will shed some more light on this question. The global role of all

corrections in the iterative process does not exceed 30% for Y = 5.2 (OPAL) at the bounds

of (6.3); it is generally much smaller, though never negligible. In particular, δ1 + δ2 +aΥg,`

for gluons (or δ̃1 + δ̃2 for quarks) sum up to O(10−2) at LEP energy scale (they reach their

maximum O(10−1) at the bound of the interval corresponding to the 30% evoked above).

The role of corrections decreases when the total energy Y of the jet increases, which

makes our calculations all the more reliable.

6.4 Results for LEP-I

In e+e− → qq̄ collisions at the Z0 peak, Q = 91.2GeV, Y = 5.2, and γ0 ' 0.5. In figure 2

we give the results for gluon jets and in figure 3 for quark jets.

6.4.1 Comments

Near the maximum of the single inclusive distribution (`1 ≈ `2 ≈ Y
2 (1 + aγ0)) our curves

are linear functions of (`1 + `2) and quadratic functions of (`1 − `2), in agreement with the

Fong-Webber analysis [6].

(Cq−1) is roughly twice (Cg−1) since gluons cascade twice as much as quarks ( Nc

CF
≈ 2).

The difference is clearly observed from figure 2 and figure 3 (left) near the hump of the

single inclusive distribution (`1+`2 ' 7.6), that is where most of the partonic multiplication

takes place.
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Figure 2: Cg for the LEP-I (Y = 7.5) inside a gluon jet as function of `1 + `2 (left) and of `1 − `2

(right)
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Figure 3: Cq for the LEP-I (Y = 7.5) inside a quark jet as function of `1 + `2 (left) and of `1 − `2

(right)

In both cases, C reaches its largest value for `1 ≈ `2 and steadily increases as a function

of (`1 + `2) (figure 2, left); for `1 6= `2, it increases with (`1 + `2), then flattens off and

decreases.

Both C’s decrease as |`1 − `2| becomes large (figure 2 and 3, right). The quark’s tail

is steeper than the gluon’s; for 5.9 < `1 + `2 < 6.1, (C − 1) becomes negative when `1 − `2

increases; C ≥ 1 as soon as `1, `2 ≥ 2.75 (x1, x2 ≤ 0.06); this bound is close to ` ≥ 2.4 found

in subsection 4.5 or ` ≥ 2.5 of (E.1).

One finds the limit

Cg or q
`1+`2→2Y−→ 1. (6.4)
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Figure 4: Decrease of the correlation for `1 6= `2 at Y = 5.2, Y = 6.0 and Y = 7.5

Actually, one observes on figures 2, 3 and 4 that a stronger statement holds. Namely,

when we take the limit `2 → Y for the softer particle, the correlator goes to 1. This is the

consequence of QCD coherence. The softer gluon is emitted at larger angles by the total

color charge of the jet and thus becomes de-correlated with the internal partonic structure

of the jet.

The same phenomenon explains the flattening and the decrease of C’s at `1 6= `2.

An interesting phenomenon is the seemingly continuous increase of Cg and Cq at large

Y for `1 ≈ `2 (green curves in figures 2 and 3 left). As we discussed in [12] concerning

inclusive distributions, here we reach a domain where a perturbative analysis cannot be

trusted because of the divergence of αs. Indeed, when (`1 + `2) gets close to its limiting

kinematical value (2Y ), both y1 and y2 get close to 0, so that the corresponding αs(k
2
1⊥)

and αs(k
2
2⊥) cannot but become out of control. Away from the `1 ≈ `2 diagonal, taking

`2 → Y (y2 → 0), we have y1 → η > 0 and the emission of the harder parton still remains

under control.

The two limitations of our approach already pointed at in [12] are found again here:

∗ x should be small enough so that our soft approximation remains valid;

∗ no running coupling constant should get too large so that pQCD remains reliable.

6.5 Comparison with the data from LEP-I

OPAL results are given in terms of

R (`1, `2, Y ) =
1

2
+

1

2
Cq (`1, `2, Y ) .

In figure 5 we compare our prediction with the OPAL data [7] and the Fong-Webber

curves (see subsection 6.6 and [6]).
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Figure 5: Correlations R between two particles produced in e+e− → qq̄ compared with the OPAL

data and the Fong-Webber approximation
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6.6 Comparing with the Fong-Webber approximation

The only pQCD analysis of two-particle correlations in jets beyond DLA was performed by

Fong and Webber in 1990. In [6] the next-to-leading O(γ0) correction, Cg or q = 1+
√

αs+· · · ,
to the normalized two-particle correlator was calculated. This expression was derived in the

region |`1−`2|/Y ¿ 1, that is when the energies of the registered particles are close to each

other (and to the maximum of the inclusive distribution [2, 4, 13]). In this approximation

the correlation function is quadratic in (`1 − `2) and increases linearly with (`1 + `2),

see (6.6). For example, if one inserts the expression of the single inclusive distribution

distorted Gaussian [13] (obtained in the region ` ≈ Y
2 (1 + aγ0)) into (4.15) the MLLA

result for a gluon jet reads

Cg(`1, `2, Y ) ≈ 1 +
1 −

(
5b − 3b `1+`2

Y

)
γ0 + O(γ2

0)

3 + 9
(

`1−`2
Y

)2
−

(
2β + 5a − 3a `1+`2

Y

)
γ0 + O(γ2

0)
, (6.5)

where we have neglected the MLLA correction δ1 ' (`1 − `2)
2√αs ' 0 near the hump

of the single inclusive distribution (`1 ≈ `2 ≈ Y
2 (1 + aγ0)). The Fong-Webber answer is

obtained by expanding (6.5) in γ0 to get [6]

C(FW)
g ≈ 4

3
−

(
`1 − `2

Y

)2

+

[
−5

3

(
b − 1

3
a

)
+

2

9
β +

(
b − 1

3
a

) (
`1 + `2

Y

)]
γ0+O(γ2

0). (6.6)

In figure 6 we compare, choosing for pedagogical reasons Y = 5.2 and Y = 100, our

exact solution of the evolution equation with the Fong-Webber predictions [6] for two-

particle correlations. The mismatch in both cases is, as seen on (6.6), O(γ2
0), and decreases

for smaller values of the perturbative expansion parameter γ0. In particular, at Y = 100,

(γ2
0 ' 0.01) the exact solution (4.2) gets close to (6.6). This comparison is analogous in

the case of a quark jet.

We do not perform such an expansion in the present work but instead keep the ra-

tios (4.2) and (5.2) as exact solutions of the evolution equations.

6.7 Predictions for Tevatron and LHC

In hadronic high energy colliders, the nature of the jet (quark or gluon) is not determined,

and one simply detects outgoing hadrons, which can originate from either type; one then

introduces a “mixing” parameter ω, which is to be determined experimentally, such that,

the expression for two particle correlations can be written as a linear combination of Cg

and Cq

Cmixed(ω; `1, `2, Y ) = A(ω; `1, `2, Y ) Cq(`1, `2, Y ) + B(ω; `1, `2, Y ) Cg(`1, `2, Y ), (6.7)

where

A(ω; `1, `2, Y ) =
ω

[
Q(`1,Y )
G(`1,Y )

Q(`2,Y )
G(`2,Y )

]

[
1 + ω

(
Q(`1,Y )
G(`1,Y ) − 1

)][
1 + ω

(
Q(`2,Y )
G(`2,Y ) − 1

)]
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Figure 6: Exact Cg compared with Fong-Webber’s at Y = 5.2 (left) and Y = 100 (right)
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Figure 7: Cg for the Tevatron (Y = 6.0) as function of `1 + `2 (left) and of `1 − `2 (right)

and

B(ω; `1, `2, Y ) =
(1 − ω)[

1 + ω
(

Q(`1,Y )
G(`1,Y ) − 1

)][
1 + ω

(
Q(`2,Y )
G(`2,Y ) − 1

)] .

We plug in respectively (4.2) (5.2) for Cg and Cq; the predictions for the latter are given

in figures 7 and 8 for the Tevatron, figures 9 and 10 for the LHC.

6.7.1 Comments

For both Y = 6.0 (Tevatron) and Y = 7.5 (LHC), the global behavior given in 6.4.1

also holds. The interval corresponding to the condition Cg or q > 1 is shifted toward larger

values of ` (smaller x) as compared with the Y = 5.2 case, in agreement with the predictions

of (4.5) and (5.4). Numerically, this is achieved for ` > 2.9 (` > 3.2) at Y = 6.0 (Y = 7.5)

in a gluon jet at the Tevatron (LHC). For a quark jet, these values become respectively
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` > 3.1 (` > 3.3) and one can check that they are close to the approximated ones obtained

in (4.5) and (5.4).

One notices that correlations increase as the total energy (Y) increases (LHC > TeV

> LEP-I).

6.8 Asymptotic behavior of Cg or q

We display in figure 11 the asymptotic behavior of Cg and Cq when Y increases.

Cg
Y →∞−→ 〈n(n − 1)〉g

〈n〉2g
≈ 1 +

1

3
≈ 1.33, Cq

Y →∞−→ 〈n(n − 1)〉q
〈n〉2q

≈ 1 +
1

3

Nc

CF
= 1.75,
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Figure 11: Asymptotic behavior of Cg and Cq when Y increases

where n is the multiplicity inside one jet. These limits coincide with those of the DLA

multiplicity correlator [14, 15]. It confirms the consistency of our approach.

7. Conclusion

In this paper two-particle correlations between soft partons in quark and gluon jets were

considered.

Corresponding evolution equations for parton correlators were derived in the next to
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leading approximation of perturbative QCD, known as MLLA, which accounts for QCD

coherence (angular ordering) on soft gluon multiplication, hard corrections to parton split-

tings and the running coupling effects.

The MLLA equations for correlators were analyzed and solved iteratively. This allowed

us to generalize the result previously obtained by Fong and Webber in [6] that was valid in

the vicinity of the maximum of the single inclusive parton energy distribution (“hump”).

In particular, we have analyzed the regions of moderately small x above which the

correlation becomes “negative” (C −1 < 0). This happens when suppression takes over the

positive correlation due to gluon cascading because of the limitation of the phase space.

Also, the correlation vanishes (C → 1) when one of the partons becomes very soft

(` = ln 1/x → Y = ln EΘ/Q0). The reason for that is dynamical rather than kinematical:

radiation of a soft gluon occurs at large angles which makes the radiation coherent and

thus insensitive to the internal parton structure of the jet ensemble.

Qualitatively, our MLLA result agrees better with available OPAL data than the Fong-

Webber prediction. There remains however a significant discrepancy, markedly at very

small x. In this region non-perturbative effects are likely to be more pronounced. They

may undermine the applicability to particle correlations of the local parton-hadron dual-

ity considerations that were successful in translating parton level predictions to hadronic

observations in the case of more inclusive single particle energy spectra.

Forthcoming data from Tevatron as well as future studies at LHC should help to

elucidate the problem.
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A. Derivation of the gluon correlator Cg in (4.2)

One differentiates G(2) − G1G2 ≡ G1G2

(
Cg − 1

)
with respect to `1 and y2 and uses the

evolution equations (3.13) and (3.36).

By explicit differentiation and using the definitions (refeq:nota4bis)-(4.8) one gets

[
G1G2

(
Cg − 1

)]
` y

= G1G2

[
Cg,` y + Cg,`

(
ψ1,y + ψ2,y

)
+ Cg,y

(
ψ1,` + ψ2,`

)]

+(Cg − 1)
[
G1G2

(
ψ1,`ψ2,y + ψ2,`ψ1,y

)
+ G1G2,` y + G2G1,` y

]
; (A.1)

the definition (4.3) of χ entails Cg,` = χ`Cg, Cg,y = χyCg, Cg,` y = Cg

(
χ` y + χ`χy

)
, such

that (A.1) rewrites

[
G(2) − G1G2

]
` y

= Cg G1G2

[(
χ` y + χ`χy

)
+ χ`

(
ψ1,y + ψ2,y

)
+ χy

(
ψ1,` + ψ2,`

)]

+(Cg − 1)
[
G1G2

(
ψ1,`ψ2,y + ψ1,yψ2,`

)
+ G1G2,` y + G2G1,` y

]
. (A.2)
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By differentiating the evolution equation for the inclusive spectra (3.13) with respect to y

and ` one gets

Gk,` y = γ2
0

(
1 − a

(
ψk,` − βγ2

0

))
Gk, (A.3)

where one has used the definition (4.4) (4.5) of ψk,` to replace dGk

d` with Gkψk,`, and (3.15)

to evaluate d
d`γ

2
0 = −βγ4

0 . Inserting (A.3) into (A.2) yields

l.h.s. (3.36)
∣∣
` y

γ2
0G1G2

= (Cg − 1)

(
2 − a (ψ1,` + ψ2,`) +

ψ1,`ψ2,y + ψ1,yψ2,`

γ2
0

+ 2aβγ2
0

)

+Cg

(
δ1 + δ2

)
, (A.4)

where δ1 and δ2 are defined in (4.7) (4.8).

Differentiating now the r.h.s. of (3.36) with respect to y2 and `1, one gets

r.h.s. (3.36)
∣∣
` y

γ2
0 G1G2

= Cg

(
1−a

(
ψ1,` + ψ2,` − βγ2

0

) )
−Cgaχ`+(a−b)

(
ψ1,` + ψ2,` − βγ2

0

)
. (A.5)

Equating the expressions (A.4) and (A.5) for the correlation function we derive

(Cg−1)
(
1 + ∆ + δ1 + a

(
χ` + βγ2

0

)
+ δ2

)
= 1−b

(
ψ1,` +ψ2,`−βγ2

0

)
−δ1−(aχ` +δ2), (A.6)

which gives (4.2).

B. Derivation of the quark correlator Cq in (5.2)

B.1 Derivation of (5.2)

The method is the same as in appendix A: one evaluates now
[
Q(2) − Q1Q2

]
` y

≡
[
Cq −

1)Q1Q2

]
` y

.

First, by differentiating the evolution equation (3.35), one gets

[
Q(2) − Q1Q2

]
` y

=
CF

Nc
γ2
0CgG1G2

(
1 − 3

4

(
ψ1,` + ψ2,` + χ` − βγ2

0

))
; (B.1)

then, one explicitly differentiates
[
(Cq − 1)Q1Q2

]
and makes use of

Qk,` y =
CF

Nc
γ2
0Gk

(
1 − 3

4
(ψk,` − βγ2

0)
)
, (B.2)

which comes directly from differentiating the r.h.s of (3.12) with respect to ` and y; this

yields

[
Q(2) − Q1Q2

]
` y

= CqQ1Q2

[
σ`

(
ϕ1,y + ϕ2,y

)
+ σ`

(
ϕ1,` + ϕ2,`

)
+ σ` y + σ`σy

]

+
(
Cq − 1

)
Q1Q2γ

2
0

[
ϕ1,`ϕ2,y + ϕ1,yϕ2,`

]

+
(
Cq − 1

)
γ2
0

CF

Nc

[(
G1Q2 + Q1G2

)
− 3

4
G1Q2

(
ψ1,` − βγ2

0

)

− 3

4
Q1G2

(
ψ2,` − βγ2

0

)]
; (B.3)
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equating (B.1) and (B.3) gives

Cq − 1 =

Nc

CF
Cg

[
1 − 3

4

(
ψ1,` + ψ2,` + χ` − βγ2

0

)]
CF

Nc

G1

Q1

CF

Nc

G2

Q2
− Cq

(
δ̃1 + δ̃2

)

∆̃ +
[
1 − 3

4

(
ψ1,` − βγ2

0

)]
CF

Nc

G1

Q1
+

[
1 − 3

4

(
ψ2,` − βγ2

0

)]
CF

Nc

G2

Q2

, (B.4)

which leads (5.2).

B.2 Expressing ∆̃, δ̃1 and δ̃2 in terms of gluon-related quantities

All the intricacies of (B.4) lie in ∆̃, δ̃1 and δ̃2 defined in (5.5), which involve the quark

related quantities σ and ϕ (5.6). In what follows, we will express them in terms of the

gluon related quantities χ and ψ (4.3) (4.4) (4.5).

B.2.1 Expression for ∆̃

Differentiating (3.16) with respect to ` yields

Qk,` =
CF

Nc
Gk,`

[
1 +

(
a − 3

4

)
ψk,`

]
+

CF

Nc
Gk

(
a − 3

4

)
ψk,` ` + O(γ4

0); (B.5)

then

ϕ` =
Qk,`

Qk
=

{
CF

Nc
Gk,`

[
1 +

(
a − 3

4

)
ψk,`

]
+

CF

Nc
Gk

(
a − 3

4

)
ψk,` `

} [
G−1

k −
(
a− 3

4

)
ψk,`G

−1
k

]

(B.6)

yields

ϕk,` = ψk,` +
(
a − 3

4

)
ψk,` ` + O(γ4

0). (B.7)

Differentiating (3.16) with respect to y yields

Qk,y =
CF

Nc
Gk,y

[
1 +

(
a − 3

4

)
ψk,`

]
+

CF

Nc
Gk

(
a − 3

4

)
ψk,` y + O(γ4

0), (B.8)

and, finally,

ϕk,y = ψk,y +
(
a − 3

4

)
ψk,` y + O(γ4

0). (B.9)

Using (B.7) and (B.9) in ∆̃ given by (5.5) gives

∆̃ ≈ ∆ +
(
a − 3

4

)(
ψ1,` yψ2,` + ψ2,` `ψ1,y + ψ2,` yψ1,` + ψ1,` `ψ2,y

)
γ−2
0 , (B.10)

which shows in particular, that ∆̃ ≈ ∆ + O(γ2
0).

B.2.2 Expression for δ̃1, δ̃2

Eq. (5.5) entails Cqγ
2
0 δ̃1 = Cq,`

(
ϕ1,y + ϕ2,y

)
+ Cq,y

(
ϕ1,` + ϕ2,`

)
; since Cq,` and Cq,y are O(γ2

0)

and considering (B.9) and (B.7), we can approximate

Cqγ
2
0 δ̃1 = Cq,`

(
ψ1,y + ψ2,y

)
+ Cq,y

(
ψ1,` + ψ2,`

)
+ O(γ5

0), (B.11)
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which needs evaluating Cq,` and Cq,y in terms of gluonic quantities. Actually, since Cq δ̃1

and Cq δ̃2 occur as MLLA and NMLLA corrections in (B.4), it is enough to take the leading

(DLA) term of Cq to estimate them

CDLA
q = 1 +

Nc

CF

1

1 + ∆
= 1 − Nc

CF
+

Nc

CF

(
1 +

1

1 + ∆

)
; (B.12)

differentiating then over ` and y yields

CDLA
q,` = −Nc

CF

∆`

(1 + ∆)2
=

Nc

CF
CDLA

g,` , (B.13)

CDLA
q,y = −Nc

CF

∆y

(1 + ∆)2
=

Nc

CF
CDLA

g,y . (B.14)

Plugging (B.13), (B.14) into (B.11) one gets

Cq δ̃1 = Cgδ1 + O(γ3
0). (B.15)

Likewise, calculating γ2
0Cq δ̃2 needs evaluating CDLA

q,` y in terms of gluonic quantities. Us-

ing (B.13) one gets

Cq δ̃2 = Cgδ2 + O(γ4
0). (B.16)

Accordingly, Cq(δ̃1 + δ̃2) can be replaced by Cg(δ1 + δ2) to get the solution (B.4). This

approximation is used to get the MLLA solution (5.10) of (B.4).

C. DLA inspired solution of the MLLA evolution equations for the inclu-

sive spectrum

This appendix completes subsection 4.2. For pedagogical reasons we will estimate the

solution of (3.13) when neglecting the running of αs (constant-γ2
0 ) (see [2, 4] and references

therein). We perform a Mellin transformation of G(`, y)

G (`, y) =

∫∫

C

dω dν

(2πi)2 eω` eνy G (ω, ν) . (C.1)

The contour C lies to the right of all singularities. In (3.13) one sets the lower bounds

for ` and y to −∞ since these integrals are vanishing when one closes the C-contour to the

right. Using Mellin’s representation for δ(`)

δ(`) =

∫∫

C

dωdν

(2πi)2
eω` eνy 1

ν
, (C.2)

one gets

G (ω, ν) =
1

ν − γ2
0

(
1/ω − a

) . (C.3)

Inserting (C.3) into (C.1) and extracting the pole (ν0 = γ2
0

(
1/ω−a

)
) from the denomi-

nator of (C.3) one gets rid of the integration over ν and obtains the following representation6

G (`, y) =

∫

C

dω

2πi
exp

[
ω` + γ2

0

(
1/ω − a

)
y
]
; (C.4)

6By making use of Cauchy’s theorem.

– 33 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
9

finally treating ` as a large variable (soft approximation x ¿ 1) allows us to have an

estimate of (C.4) by performing the steepest descent method; one then has

G(`, y)
x¿1≈ 1

2

√
γ0 y1/2

π `3/2
exp

(
2γ0

√
` y − aγ2

0 y
)
. (C.5)

However, since we are interested in getting logarithmic derivatives; in this approxima-

tion we can drop the normalization factor of (C.5) which leads to sub-leading corrections

that we do not take into account here; we can use instead

G(`, y)
x¿1' exp

(
2γ0

√
` y − aγ2

0 y
)
, (C.6)

which is (4.10).

D. Exact solution of the MLLA evolution equation for the inclusive spec-

trum

We solve (3.13) by performing a Mellin transformation of the following function (γ2
0 , β and

λ are defined in (3.15), (2.6)):

F (`, y) = γ2
0(` + y)G (`, y) ,

that is,

F (`, y) =

∫∫

C

dωdν

(2πi)2
eω` eνy F (ω, ν) . (D.1)

Plugging (D.1) into (3.13) we obtain:

β (` + y + λ)

∫∫
dωdν

(2πi)2
eω` eνy F (ω, ν) =

∫∫
dωdν

(2πi)2
eω` eνy

[
1

ν
+

F (ω, ν)

ων

]

−a

∫∫
dωdν

(2πi)2 eω` eνy F(ω, ν)

ν
,

where we have again replaced δ(`) by its Mellin’s representation (C.2). Then using the

equivalence ` ↔ ∂
∂ω , y ↔ ∂

∂ν , we integrate the l.h.s. by parts and obtain:

β

∫∫
dωdν

(2πi)2

[(
∂

∂ω
+

∂

∂ν
+λ

)
eω`+νy

]
F (ω, ν) = β

∫∫
dωdν

(2πi)2

(
λF− ∂F

∂ω
− ∂F

∂ν

)
eω`+νy.

We are finally left with the following inhomogeneous differential equation:

β

(
λF− ∂F

∂ω
− ∂F

∂ν

)
=

1

ν
+

F
ων

− a
F
ν

. (D.2)

The variables ω and ν can be changed conveniently to

ω′ =
ω + ν

2
, ν ′ =

ω − ν

2
,
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such that (D.2) is now decoupled and can be easily solved:

β

(
λF − dF

dω′

)
=

1

ω′ − ν ′
+

F
ω′2 − ν ′2

− a
F

ω′ − ν ′
.

The solution of the corresponding homogeneous equation, written as a function of ω and

ν, is the following:

Fh (ω, ν) =
1

β

∫ ∞

0

ds

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν) (
ν

ν + s

)a/β

.

We finally obtain the exact solution of (3.13) given by the following Mellin’s represen-

tation:

G (`, y) = (`+y+λ)

∫∫
dω dν

(2πi)2 eω`+νy

∫ ∞

0

ds

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν)( ν

ν + s

)a/β

e−λs.

(D.3)

Eq. (D.3) will be estimated using the steepest descent method in a forthcoming work

that will treat two particles correlations at Q0 ≥ ΛQCD (λ = ln(Q0/ΛQCD) 6= 0) [10, 11].

Inserting (D.3) into (3.36) one has the Mellin’s representation inside a quark jet

Q(`, y) = (` + y + λ)

∫∫
dω dν

(2πi)2
eω`+νy

(
γ2
0

ων
− 3

4

γ2
0

ν

) ∫ ∞

0

ds

ν + s

(
ω (ν + s)

(ω + s) ν

)1/β(ω−ν)

×
(

ν

ν + s

)a/β

e−λs;

where γ2
0/ων = O(1) and the second term is the MLLA correction γ2

0/ν = O(γ0).

D.1 Limiting spectrum, λ = 0

We set λ = 0 (that is Q0 = ΛQCD) in (D.3) and change variables as follows

ω̄ = ω − ν, s + ω̄t = ω̄/u, A ≡ A(ω̄) =
1

βω̄
, B = a/β

to get (` + y = Y is used as a variable)

G (`, Y ) =

∫ ε1+i∞

ε1−i∞

dω̄

2πi
x−ω̄ω̄Y

∫ ε2+i∞

ε2−i∞

dt

2πi
eω̄Y t

(
t

1 + t

)−A

tB
∫ t−1

0
duuB−1 (1 + u)−A ;

(D.4)

the last integral of (D.4) is the representation of the hypergeometric functions of the second

kind (see [16])

∫ t−1

0
duuB−1 (1 + u)−A =

t−B

B
2F1

(
A,B;B + 1;−t−1

)
;

for <B > 0, we also have

2F1 (a, b; c;x) =

∞∑

n=0

(a)n (b)n xn

(c)n n!
,
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where for example

(a)n =
Γ (a + n)

Γ (a)
= a (a + 1) . . . (a + n − 1) .

Therefore (D.4) can be rewritten in the form:

G (`, Y ) =
Y

B

∫ ε1+i∞

ε1−i∞

dω̄

2πi
x−ω̄ω̄

∫ ε2+i∞

ε2−i∞

dt

2πi
eω̄Y t

(
t

1 + t

)−A

2F1

(
A,B;B + 1;−t−1

)
.

(D.5)

By making use of the identity [17]:

(
1 + t−1

)
2F1

(
−A + B + 1, 1;B + 1;−t−1

)
=

(
t

1 + t

)−A

2F1

(
A,B;B + 1;−t−1

)
,

we split (D.5) into two integrals. The solution of the second one is given by the hypergeo-

metric function of the first kind [17]:

∫ ε2+i∞

ε2−i∞

dt

2πi
eω̄Y tt−1

2F1

(
−A + B + 1, 1;B + 1;−t−1

)
= 1F1 (−A + B + 1;B + 1;−ω̄Y ) .

(D.6)

Taking the derivative of (D.6) over (ω̄Y ) we obtain:

∫ ε2+i∞

ε2−i∞

dt

2πi
eω̄Y t

2F1

(
−A + B + 1, 1;B + 1;−t−1

)

= − d

d (−ω̄Y )
1F1 (−A + B + 1;B + 1;−ω̄Y ) ,

where,

1F1 (a; b;x) ≡ Φ (a; b;x) =

∞∑

n=0

(a)n xn

(b)n n!
.

We finally make use of the identity [17]:

1F1 (−A + B + 1;B + 2;−ω̄Y ) =
B + 1

A

[
1F1 (−A + B + 1;B + 1;−ω̄Y )

− d

d (−ω̄Y )
1F1 (−A + B + 1;B + 1;−ω̄Y )

]

to get (1F1 ≡ Φ):

G (`, Y ) =
Y

βB (B + 1)

∫ ε+i∞

ε−i∞

dω̄

2πi
x−ω̄Φ (−A + B + 1, B + 2,−ω̄Y ) ; (D.7)

we can rename ω̄ → ω and set Y = ` + y, which yields

G (`, y) =
` + y

βB (B + 1)

∫ ε+i∞

ε−i∞

dω

2πi
x−ωΦ (−A + B + 1, B + 2,−ω(` + y))

=
` + y

βB (B + 1)

∫ ε+i∞

ε−i∞

dω

2πi
e−ωyΦ (A + 1, B + 2, ω(` + y)) . (D.8)
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We thus demonstrated that the integral representation (D.3) is equivalent to (D.7) in

the limit λ = 0. In this problem all functions are derived using (D.8), and one fixes the

value of Y = ln(Q/Q0) (that is fixing the hardness of the process under consideration),

such that each result is presented as a function of the energy fraction in the logarithmic

scale ` = ln(1/x). As demonstrated in [2, 12], the inclusive spectrum can be obtained

using (D.7) and the result is

G(`, Y ) = 2
Γ(B)

β
<

(∫ π
2

0

dτ

π
e−Bα FB(τ, y, `)

)
, (D.9)

where the integration is performed with respect to τ defined by α =
1

2
ln

(
Y

`
− 1

)
+ iτ ,

FB(τ, `, Y ) =

[
cosh α −

(
1 − 2`

Y

)
sinhα

Y
β

α
sinh α

]B/2

IB

(
2
√

Z(τ, `, Y )
)
,

Z(τ, `, Y ) =
Y

β

α

sinhα

[
cosh α −

(
1 − 2`

Y

)
sinhα

]
; (D.10)

IB is the modified Bessel function of the first kind.

D.2 Logarithmic derivatives of the spectrum, λ = 0

Using the expressions derived in [12] and fixing the sum ` + y = Y , one gets

d

d`
G (`, Y ) = 2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[
1

Y
(1 + 2eα sinhα)FB +

1

β
eαFB+1

]
; (D.11)

and

d

dy
G(`, Y )=2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[
1

Y
(1 + 2eα sinhα)FB +

1

β
eαFB+1 −2 sinh α

Y
FB−1

]
.

(D.12)

Logarithmic derivatives ψ` and ψy are then constructed according to their defini-

tion (4.4) (4.5) by dividing (D.11) and (D.12) by the inclusive spectrum (D.9).

Using the expression of Bessel’s series, one gets

• for ` → 0;

ψ`
`→0' a

β`
+ c1 ln

(
Y

`
− 1

)
→ ∞,

c1 =
2a/β+2

π(a + 2β)

∫ π/2

0
dτ (cos τ)a/β+2

[
cos

(
a

β
τ

)
− tan τ sin

(
a

β
τ

)]

= 0.4097 > 0,

ψy
`→0' −aγ2

0 + c1
`

y
→ −aγ2

0 . (D.13)

• for ` → Y ⇔ y → 0;

ψ`
y→0' c2

(
Y

`
− 1

)
→ 0,
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c2 =
2a/β+2

π(a + 2β)

∫ π/2

0
dτ (cos τ)a/β+2

[
cos

(
a

β
τ

)
+ tan τ sin

(
a

β
τ

)]

= 0.9218 > 0;

ψy
y→0' −c2 ln

(
Y

`
− 1

)
→ ∞. (D.14)

They are represented in figure 12 as functions of ` for two different values of Y (=

5.2, 15).

D.3 Double derivatives

In the core of this paper we also need the expression for ψ,`,`

ψ` ` =
1

G
G` ` − (ψ`)

2. (D.15)

By differentiating twice (D.8) with respect to `, one gets

G` `(`, y) =
2

` + y

(
G`(`, y) − 1

` + y
G(`, y)

)
(D.16)

+
(` + y)Γ(B)

βΓ(B + 3)

∫ ε+i∞

ε−i∞

dω

2πi
e−ωyω2

(
A2 + 3A + 2

)
Φ (A + 3, B + 4;ω(` + y)) .

Using the procedure of [12] (appendix A.2) and setting y = Y − `, the result for G` ` reads

G` `(`, Y ) =
2

Y

(
G`(`, Y ) − 1

Y
G(`, Y )

)
(D.17)

+2
Γ(B)

β

∫ π
2

0

dα

π
e−(B−2)α

[
1

β2
FB+2 +

6

βY
sinhαFB+1 +

8

Y 2
sinh2 αFB

]
.

Likewise, for

ψy y =
1

G
Gy y − (ψy)

2, (D.18)

where

Gy y(`, y) = γ2
0G(`, y) +

1

Y

(
Gy(`, y) − G`(`, y)

)
(D.19)

+
1

β

(` + y)Γ(B)

Γ(B + 2)

∫ ε+i∞

ε−i∞

dω

2πi
e−ωy

(
ω2 − ω

β

)
Φ (A + 1, B + 3;ω(` + y)) ,

one gets

Gy y(`, Y ) = γ2
0G(`, Y ) +

1

Y

(
Gy(`, Y ) − G`(`, Y )

)
(D.20)

+4
Γ(B)

β

∫ π
2

0

dα

π
e−(B+1)α

[
2(B + 1)

sinh2 α

Y 2
FB−1 −

1

β

sinhα

Y
FB

]
.

Finally,

ψ` y = ψy ` = γ2
0

[
1 − a

(
ψ` − βγ2

0

)]
− ψ`ψy.

ψ` `, ψy y and ψ` y are drawn in figure 13 of appendix E.1.1 as functions of ` for fixed Y .

They are all O(γ3
0).
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Figure 12: Derivatives ψ` and ψy as functions of ` at fixed Y = 5.2 (left) and Y = 15 (right)

E. Numerical analysis of corrections

In this section, we present plots for the derivatives of ψ, and ϕ (see (4.4) (4.5) and (5.6)),

for Υ and its derivatives (see (6.1) (6.2)), for ∆, δ1, δ2 (see (4.3)-(4.8)) and the combination

δc ≡ δ1 + δ2 + aΥ`, δ̃c ≡ δ̃1 + δ̃2.

E.1 Gluon jet

E.1.1 ψ and its derivatives

This subsection is associated with appendices D.2 and D.3 . It enables in particular to

visualize the behaviors of ψ` and ψy when ` → 0 or y → 0, as described in (D.13) and (D.14),

and to set the ` interval within which our calculation can be trusted.

In figure 12 are drawn ψ` and ψy as functions of ` for two values Y = 5.2 corresponding

to LEP working conditions, and Y = 15 corresponding to an unrealistic “high energy limit”.

ψ` and (ψy) being both O(γ0), they should not exceed a “reasonable value”; setting

this value to 1, |ψ`| < 1 and |ψy| < 1 set, for Y = 5.2, a confidence interval

2.5 ≤ ` ≤ 4.5. (E.1)

In the high energy limit Y = 15, this interval becomes, 4.5 ≤ ` ≤ 13, in agreement

with 4.5.

E.1.2 ∆(`1, `2, Y )

∆ has been defined in (4.6), in which ψ1,` and ψ1,y are functions of `1 and Y , ψ2,` and ψ2,y

are functions of `2 and Y .

Studying the limits ` → 0 and ` → Y of subsection D.2:
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Figure 13: Double derivatives ψ` `, ψ` y and ψy y as functions of ` at fixed Y

• for `1, `2 → Y one gets (using the results of D.2)

∆ ' −c 2
2

(
Y − `1

`1
ln

Y − `2

`2
+

Y − `2

`2
ln

Y − `1

`1

)
, (E.2)

such that

∆
`1−`2→0−→ 0, ∆

`1−`2→∞−→ +∞. (E.3)

• for `1, `2 → 0 one gets (according to D.2):

∆ ' −aγ2
0

[
a

β

(
1

` 1
+

1

` 2

)
+ c1

(
ln

Y − `1

`1
+ ln

Y − `2

`2

)]
→ −∞. (E.4)

In figure 14 (left) ∆ is plotted as a function of `1+`2 for three different values of `1−`2

(0.1, 0.5, 1.0); the condition (E.1) translates into

5.0 ≤ `1 + `2 ≤ 9.0; (E.5)

on figure 14 (right) the asymptotic limit ∆ → 2 for very large Y clearly appears (we have

taken `1 − `2 = 0.1); it is actually its DLA value [2]; this is not surprising since, in the

high energy limit γ0 becomes very small and sub-leading corrections (hard corrections and

running coupling effects) get suppressed.

E.1.3 Υg and its derivatives

Figure 15 exhibits the smooth behavior of exp (Υg) as a function of (`1 + `2) in the whole

range of applicability of our approximation (we have chosen the same values of (`1 − `2) as

for figure 14), and as a function of (`1 − `2) for three values of (`1 + `2) (6.0, 7.0, 8.0). So,

the iterative procedure is safe and corrections remain under control.
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Figure 14: ∆ as a function of `1 + `2 for Y = 5.2 (left) and its asymptotic behavior (right,

`1 − `2 = 0.1)
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Figure 15: exp (Υg) as a function of `1 + `2 (left) and, `1 − `2 (right) for Y = 5.2

Figure 16 displays the derivatives of Υg. (E.6), (E.6) and (E.7) have been plotted at

Y = 5.2, for (`1 − `2) = 0.1 (left) and (`1 − `2) = 1.0 (right). The size and shape of these

corrections agree with our expectations (Υg,` = Υg,y = O(γ2
0), Υg,` y = O(γ4

0)).

For explicit calculations, we have used

Υg,` = −
[
1 − b

(
ψ1,` + ψ2,` − βγ2

0

)] (
∆` − aβ2γ4

0

)
(
1 + ∆ + aβγ2

0

) [
2 + ∆ − b

(
ψ1,` + ψ2,` − βγ2

0

)] − b
(
ψ1,` ` + ψ2,` ` + β2γ4

0

)

2 + ∆ − b
(
ψ1,` + ψ2,` − βγ2

0

) ,

(E.6)

Υg,y = −
[
1 − b

(
ψ1,` + ψ2,` − βγ2

0

)] (
∆y − aβ2γ4

0

)
(
1 + ∆ + aβγ2

0

) [
2 + ∆ − b

(
ψ1,` + ψ2,` − βγ2

0

)] − b
(
ψ1,` y + ψ2,` y + β2γ4

0

)

2 + ∆ − b
(
ψ1,` + ψ2,` − βγ2

0

) ,

(E.7)
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Figure 16: Υg,`, Υg,y and Υg,` y as functions of `1 + `2 for Y = 5.2, `1 − `2 = 0.1 (left) and

`1 − `2 = 1.0 (right)

Υg,` y =
∂Υg,y

∂`
, (E.8)

where

∆` = γ−2
0 [ψ1,` `ψ2,y + ψ1,`ψ2,y ` + ψ2,` `ψ1,y + ψ2,`ψ1,y `] + βγ2

0∆,

∆y = γ−2
0 [ψ1,` yψ2,y + ψ1,`ψ2,y y + ψ2,`yψ1,y + ψ2,`ψ1,y y] + βγ2

0∆. (E.9)

For the expressions of ψ` `, ψ` y = ψy ` and ψy y, the reader is directed to D.3. (E.7) has been

computed numerically (its analytical expression is too heavy to be easily manipulated).

E.1.4 δ1, δ2, δc

δ1 and δ2 are defined in (4.3) (4.8). We also define

δc = δ1 + δ2 + aΥ`, (E.10)

which appears in the numerator of the first line of (4.2).

Figure 17 displays the behavior of δ1, δ2 and δ1 + δ2 at Y = 5.2 for `1 − `2 = 0.1

and `1 − `2 = 1.0. We recall that these curves can only be reasonably trusted in the

interval (E.5).

Though |δ1| = O(γ0) (MLLA) should be numerically larger than |δ2| = O(γ2
0) (NM-

LLA), it turns out that for relatively large γ0 ∼ 0.5 (Y=5.2), |δ1| ∼ |δ2|, and that strong

cancellations occur in their sum. As γ0 decreases (or Y increases) |δ1| À |δ2|, in agreement

with the perturbative expansion conditions.

In figure 18 we represent δc for different values of Y ; it shows how the sum of corrections

(MLLA and NMLLA) stay under control in the confidence interval (E.5). For Y = 5.2 one

reaches a regime where it becomes slightly larger than 0.1 away from the region x1 ≈ x2

(see upper curve on the right of figure 18) but still, since 1 (which is the leading term in

the numerator of (4.2)) À 0.1, our approximation can be trusted.
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E.1.5 The global role of corrections in the iterative procedure

Figure 19 shows the role of δc on the correlation function: we represent the bare function

exp Υg (see 6.1) as in figure 15, together with (4.2). For (`1 − `2) = 0.1 (`1 ≈ `2) and

(`1 − `2) = 1.0, it is shown how δc modifies the shape and size of exp Υg. When `1 6= `2

((`1 − `2) = 1.0), δc decreases the correlations. They are also represented as a function of

(`1 − `2) when (`1 + `2) is fixed ( to 6.0 and 7.0). The increase of δc as one goes away from

the diagonal `1 ≈ `2 (see figure 18 for (`1 − `2) = 1.0) explains the difference between the

green and blue curves; this substantially modifies the tail of the correlations.

When Y gets larger, the role of δc decreases: at Y = 7.5 (LHC conditions) the difference

between the two curves becomes negligible.
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Figure 19: Cg (blue) compared with exp Υg (green)

E.2 Quark jet

E.2.1 ϕ and its derivatives

Figure 20 displays the derivatives ϕ` and ϕy together with those ψ` and ψy for the gluon

jet, at Y = 5.2. Their sizes and shapes are the same since the logarithmic derivatives of

the single inclusive distributions inside a gluon or a quark jet only depend on their shapes

(the normalizations cancel in the ratio), which is the same in both cases. The mismatch at

small ` between ϕ` and ψ` stems from the behavior of ψ` ` ψ` `
`→0−→ −∞. Therefore, in the

interval of applicability of the soft approximation (B.7) and (B.9) can be approximated by

ψ` and ψy respectively.

E.2.2 ∆̃(`1, `2, Y )

The last statement in E.2.1 numerically supports the approximation (B.10), that is

∆̃ ≈ ∆ + O(γ2
0).
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We get rid of the heavy O(γ2
0) factor in (B.10) to ease our numerical calculations.

Hence, the behavior of ∆̃ is already given in figure 14.

E.2.3 Υq and its derivatives

The smooth behavior of exp Υq is displayed in figure 21 as a function of the sum (`1+`2) for

fixed (`1−`2) and vice versa. The normalization of (exp Υq−1) is roughly twice (× Nc
CF ≈ 2)

as large as that of (exp Υg − 1). We then consider derivatives of this expression to get

the corresponding iterative corrections shown in figure 22. The behavior of Υq,`(O(γ2
0)),

Υq,y(O(γ2
0)) and Υq,` y(O(γ4

0)) is in good agreement with our expectations as far as the

order of magnitude and the normalization are concerned (see also figure 16).7

E.2.4 δ̃1, δ̃2 and δ̃c

We define

δ̃c = δ̃1 + δ̃2

as it appears in both the numerator and denominator of (5.2). In figure 23 are displayed

δ̃1, δ̃2 and their sum δ̃c as functions of the sum (`1 + `2) at fixed (`1 − `2) (`1 − `2 = 0.1,

left) (`1 − `2 = 1.0, right).

At Y = 5.2, which corresponds to γ0 ≈ 0.5, the relative magnitude of δ̃1 and δ̃2 is in-

verted8 with respect to what is expected from respectively MLLA and NMLLA corrections

(see subsection 4.2). This is the only hint that, at this energy, the expansion should be

pushed to include all NMLLA corrections to be reliable.

7It is also important to remark that Υq,`, Υq,`, Υq,` y are × Nc

CF

Υg,`, Υg,`, Υg,` y .
8It has been numerically investigated that the expected relative order of magnitude of δ̃1 and δ̃2 is

recovered for Y ≥ 8.0 (this value can be eventually reached at LHC).
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Figure 21: exp (Υq) as a function of `1 + `2 (left) and, `1 − `2 (right) for Y = 5.2
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Large cancellations are, like for gluons, seen to occur in δ̃c, making the sum of correc-

tions quite small. In order to study the behavior of δ̃c as Y increases, it is enough to look

at figure 24 where we compare δ̃c at Y = 5.2, 6.0, 7.5.

E.2.5 Global role of corrections in the iterative procedure

It is displayed in figure 25. δ̃c does not affect exp Υq near the main diagonal (`1 = `2), but

it does far from it. We find the same behavior as in the case of a gluon jet.

F. Comparing DLA and MLLA correlations

In figure 26 we compare the quark correlator at DLA and MLLA. The large gap between
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the two curves accounts for the energy balance that is partially restored in MLLA by

introducing hard corrections in the partonic evolution equations (terms ∝ a, b and 3
4); the

DLA curve is obtained by setting a, b and 3
4 to zero in (4.2) and (5.2); Cq is a practically

constant function of `1 +`2 in almost the whole range, and decreases when `1 +`2 → 2Y by

the running of αs. The MLLA increase of Cq with `1 + `2 follows from energy conservation.

Similar results are obtained for Cg.
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